Nursing paper about research literature

Nursing paper about research literature

ORDER CUSTOM, PLAGIARISM-FREE PAPERS ON  Nursing paper about research literature

1, Please read the two PDF article very thoroughly.

2, Answer all the questions in research form.

3 If you have any question, you can get some good idea from the sample paper, and please do not copy more than half of the sample paper, and when you copy, Please paraphrase in a good way.

4, Turn it in rate should be less than 5%.

Thank you.

 

als et al. BMC Health Services Research (2015) 15:402 DOI 10.1186/s12913-015-1071-1 RESEARCH ARTICLE Open Access Making sense of a new technology in clinical practice: a qualitative study of patient and physician perspectives Regitze A. S. Pals1*, Ulla M. Hansen1, Clea B. Johansen1, Christian S. Hansen2, Marit E. Jørgensen2, Jesper Fleischer3 and Ingrid Willaing1 Abstract Background: The number of new technologies for risk assessment available in health care is increasing. These technologies are intended to contribute to both improved care practices and improved patient outcomes. To do so however, there is a need to study how new technologies are understood and interpreted by users in clinical practice. The objective of this study was to explore patient and physician perspectives on the usefulness of a new technology to detect Cardiovascular Autonomic Neuropathy (CAN) in a specialist diabetes clinic. The technology is a handheld device that measures resting heart rate and conducts three cardiac autonomic reflex tests to evaluate heart rate variability. Methods: The study relied on three sources of data: observations of medical consultations where results of the CAN test were reported (n = 8); interviews with patients who had received the CAN test (n = 19); and interviews with physicians who reported results of the CAN test (n = 9). Data were collected at the specialist diabetes clinic between November 2013 and January 2014. Data were analysed using the concept of technological frames which is used to assess how physicians and patients understand and interpret the new technology. Results: Physicians generally found it difficult to communicate test results to patients in terms that patients could understand and to translate results into meaningful implications for the treatment of patients. Results of the study indicate that patients did not recall having done the CAN test nor recall receiving the results. Furthermore, patients were generally unsure about the purpose of the CAN test and the implications of the results. Discussion: Involving patients and physicians is essential when a new technology is introduced in clinical practice. This particularly includes the interpretation and communication processes related to its use. Conclusions: The integration of a new risk assessment technology into clinical practice can be accompanied by several challenges. It is suggested that more information about the CAN test be provided to patients and that a dialogue-based approach be used when communicating test results to patients in order to best support the use of the technology in clinical practice. Keywords: Users’ experiences, Technology, Risk assessment, Diabetes, Cardiac autonomic neuropathy * Correspondence: riap@steno.dk 1 Health Promotion Research, Steno Diabetes Center A/S, Gentofte, Denmark Full list of author information is available at the end of the article © 2015 Pals et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Pals et al. BMC Health Services Research (2015) 15:402 Background In recent years the number of new healthcare technologies available to the healthcare industry has increased rapidly. Most of these new technologies can be characterized as decision support systems, often utilizing computer applications that are intended to assist health professionals and patients in making decisions about care and intervention options [1, 2]. However, according to Berg et al. [3] a major impediment to the introduction of new technologies in health care practice is the need to integrate new technologies into existing routines [3]. For instance, the technology may seem illogical to the users if the actions prescribed by the technology run against their daily routines [4, 5]. This points to the importance of studying how patients and physicians understand the new technology in relation to their daily practice. Studies of user perspectives on new healthcare technologies have shown that health professionals and patients may consider new technologies as useful tools assisting health professionals and patients in clinical decision making [2, 6, 7]. However, it has also been shown that health professionals find it difficult to integrate technology into their work practices if there is a mismatch between the expectations of the technology and work practices [8]. This can result in resistance to use the technology, partial use of the technology or other practices to overcome perceived limitations of the technology [8]. In addition, studies have shown that differing priorities between health professionals and patients translate into differing criteria when assessing the usefulness of new technology [2, 6, 7]. Two studies of user attitudes toward a new technology for cardiovascular risk assessment found that the main concern of clinicians was that the use of the system would increase consultation time [2, 6]. In addition, clinicians reported some difficulties using the technology. In a study by Wilson et al. [2], patients found that the program positively impacted the consultation process, allowing them to contribute to the assessment and management of their cardiovascular risk. However, other studies have found that new technologies can interfere with health professionalpatient relationships, creating for example, a loss of relational contact [7, 9]. In considering the aforementioned studies it is important to note that new healthcare technologies vary considerably in their design and function [1]. They differ according to the task they are designed to support, the way patient data are utilized, the types of outputs that are generated and the ways outputs are communicated to health professionals and patients [1]. Nursing paper about research literature

In this study we focus on a new technology designed to detect Cardiac Autonomic Neuropathy (CAN) in people with diabetes. CAN is a serious and frequently occurring complication of diabetes and has been reported to be a predictor Page 2 of 10 of cardiovascular morbidity and mortality in people with diabetes [10]. It has been shown that CAN is associated with a high risk of cardiac arrhythmias and sudden death, which is possibly related to silent myocardial ischemia [11]. Abnormalities in cardiac autonomic activities can be found in people at diabetes onset and in people with pre-diabetes [12, 13]. Patients are often unaware of having CAN, as the complication may be asymptomatic even long into the course of diabetes [10, 12, 13]. It has been suggested that early detection of CAN is important to motivate patients and physicians to minimize risk factors and thereby reduce further development of complications [14, 15]. It is therefore currently recommended that screening for CAN takes place at point of diagnosis of type 2 diabetes and within five years after diagnosis of type 1 diabetes, to best improve health outcomes [16, 17]. CAN screening can be performed using a recently developed handheld device, the Vagus™ device [14]. The device measures resting heart rate and conducts three different standardized cardiac autonomic reflex tests to evaluate heart rate variability [14]. The tests include measurement of heart rate response during rest, after changing position, during expiration and inspiration and during Valsalva maneuver [14]. The measurement of heart rate variability using cardiac autonomic reflex tests is currently the most sensitive and specific test for CAN [10]. Abnormal heart rate variability in one test indicates early signs of CAN or borderline disease. Two or more tests demonstrating abnormal heart rate variability confirm a diagnosis of CAN [14]. The prevalence of CAN in people with diabetes was recently estimated using the technology and use of the new technology was found to be both feasible in and relevant to clinical practice [14]. Nursing paper about research literature

The developers of the CAN screening device have described three primary functions of the tool: 1) help refine cardiovascular risk stratification, 2) lead to an increased focus on the prevention of late complications of diabetes, and 3) serve as a tool to engage patients in their own diabetes care1. The functions described above suggest that the device is intended to support health professionals in clinical decision making and assist patients in their care through detection of CAN Fig. 12. However, to transform these intentions into practice, the intended use of the technology must be supported by the users and the organizational context of use. This requires that users learn how to utilize the technology and start to actually use it in their daily work [18]. Adoption of a new technology is therefore a continuous process requiring the engagement and empowerment of end-users [1, 19, 20]. To understand whether or not this happens and the process by which it might occur, there is a need to examine how the technology is perceived by physicians and patients in clinical Pals et al. BMC Health Services Research (2015) 15:402 Page 3 of 10 Fig. 1 The intended use of the CAN test in clinical practice practice and what meaning they ascribe to the technology [21–23]. This includes the processes by which test results are understood and communicated in clinical practice. The objective of this study was to explore patient and physician perspectives on the use of a new CAN detection technology at a Danish specialist diabetes clinic in the greater Copenhagen area. Theoretical framework The study uses the concept of technological frames to help assess how users understand and interpret the new technology [24]. The concept of technological frames is derived from social cognitive research but also draws on sociological literature exploring the social constructions of technology [24–26]. The notion of technological frames is based on the premise that an individual’s interpretation of new technology is fundamental in influencing how he/she interacts with that technology [24]. An individual’s technological frame is characterized by his or her assumptions, expectations and prior knowledge about a technology, reflecting the process of ‘making sense’ of new technologies [18, 24]. According to Orlikowski and Gash [24] these sense-making processes shape how new technology is used. Furthermore, the authors suggest that different groups within an organization develop different technological frames referring to incongruences between frames. This implies that technological frames are shared by members of a group having a particular interaction with the technology and reflect different ways of knowing and making sense of technology. Nursing paper about research literature

However, frames can also be inconsistent within a group [24]. The identification of those incongruences and inconsistences between and within user groups can provide an explanation of the difficulties and unanticipated outcomes associated with the introduction of a new technology in an organization. In our study, the concept of technological frames and the identification of incongruences and inconsistencies between and within frames informed the collection as well as the analysis and interpretation of data. Methods The exploration of patient and physician perspectives on CAN test use in clinical practice was carried out between November 2013 and January 2014. The study is based on three sources of data: observations of medical consultations where results of the CAN test were reported (n = 8); interviews with patients who had received the CAN test (n = 19); and interviews with physicians who reported results of the CAN test (n = 9). Setting Data collection was carried oData collection was carried out at a specialist diabetes clinic in the greater Copenhagen area parallel to a quantitativeut at a specialist diabetes clinic in the greater Copenhagen area parallel to a quantitative implementation study of the Vagus™ device at the clinic. This study was initiated as a qualitative contribution to the implementation study to explore user perspectives on the introduction of the device to the clinic within the period of November 2013 and January 2014. The clinic serves as an integrated part of the Danish National Health Service and has a patient base of around 5600 patients with type 1 and type 2 diabetes from the Capital Region of Denmark. Physicians who participated in the study were invited to attend a seminar series over the course of four different mornings at the specialist diabetes clinic. At the seminars, physicians were introduced to CAN and CAN diagnosis. Furthermore, they were shown how to use the device (Vagus™) to conduct a CAN test and were provided with an information sheet outlining the characteristics of patients eligible for the CAN test, diagnostic criteria for CAN and a set of guidelines for using the CAN test in clinical practice. At the clinic, the CAN test was performed by laboratory technicians. Physicians could then access test results through the Electronic Patient Record (EPR) and use the result in medical consultations with patients. Patients eligible for the CAN test received an invitation letter with information on the test. Data collection Patients who received the CAN test and where scheduled to receive the results at a subsequent medical consultation between November 2013 and January 2014 were identified through the EPR (n = 55). A patient coordinator at the clinic assisted in identifying those patients. Nursing paper about research literature

We conducted observations between January 2nd and January 14th 2014. At days where consultations were scheduled, we contacted the respective physicians to request permission to perform observations. In addition, we had correspondence with a nurse who kept us updated about forthcoming consultations where test results were Pals et al. BMC Health Services Research (2015) 15:402 to be provided. A series of observation sessions of medical consultations in which CAN test results were reported (n = 8) were organized. However, in one observation it turned out that the patient had not received the CAN test due to complications. Sampling We (RASP, UMH, CBJ) used the following methods to recruit patients and physicians for interviews. Physicians were recruited through 1) personal approach following observations of consultations, 2) e-mail invitations to all physicians at the specialist diabetes clinic. Patients were recruited through 1) personal approach following observations of consultations, 2) phone calls based on data from the EPR Fig. 23. After each observation session, the patient and physician were approached with a request to participate in interviews. Using this method, we recruited three physicians and seven patients for interviews. In parallel with observations, we invited all physicians at the specialist diabetes clinic (n = 31) by e-mail to participate in interviews. None of the invited physicians responded to the request and in a purposeful sampling process we recruited eight physicians for a further follow-up invitation. Selection was based on physicians’ level of clinical experience ensuring that both chief physicians and less experienced physicians were invited. In addition, we selected Fig. 2 Recruitment of participants for the study Page 4 of 10 physicians assumed to have more consultations with patients and thus have more frequent communication of test results. Of these eight physicians, six agreed to participate. Combined with the three physicians recruited from observation sessions, interviews were conducted with nine physicians in total. To recruit patients for interviews besides the seven patients recruited at observations, we retrieved phone numbers of patients identified through the EPR. We contacted all patients identified through the EPR whose phone numbers we were able to retrieve (n = 25) and conducted an additional 12 phone interviews between January 14th and January 31st 2014. The 13 remaining patients could not be reached by phone. None of the patients refused to participate. Observation and interview guides The primary focus of the observations was to study physicians’ use of the results of the CAN test in clinical practice and to study the communication of test results. At each observation session the observer (RASP, UMH, CBJ) collected field notes based on an observation guide. Nursing paper about research literature

The observation guide addressed the amount of time spent on communication of test results, the explanations provided by physicians, the dialogue and terminologies used in the communication of test results as well as patients’ reaction to the information provided. Pals et al. BMC Health Services Research (2015) 15:402 We (RASP, UMH, CBJ) used semi-structured interview guides for interviews with physicians and patients. The interview guides were based on the concept of technological frames focusing on assumptions, perceptions and knowledge of the introduction of the CAN test. This included implications for clinical practice and the communication of test results. Physicians, patients and the interviewer were allowed to develop or introduce new themes. The duration of each interview was about 30 min (mean: 22 min). Interviews were audio-taped and transcribed. Informed consent was obtained from physicians and patients prior to observations of medical consultations and conducting interviews. Written consent was obtained for interviews in person and verbal consent for phone interviews. The study was accepted by the National Committee on Health Research Ethics and the Danish Data Protection Agency. Analytical approach Patient and physician perspectives on the CAN test were analysed qualitatively. All data including interviews and field observations were analysed using content analysis to systematically make inferences about the intentions and interpretations of physicians and patients as described by Agar [27] and Eisenhardt [28]. In the procedure, we focused on identifying statements or actions reflecting physicians’ and patients’ technological frames. This includes perceptions and knowledge of the CAN test in terms of its implications for clinical practice and the communication of test results. The examination of data was carried out in the following steps in accordance with Orlikowski and Gash [24]: 1) separating the data into statements and actions of physicians and patients respectively, 2) sorting the data into categories suggested by the data, 3) comparing categories generated by the data of physicians and patients to identify common themes, 4) recoding of data using the proposed themes. Nursing paper about research literature

Using this iterative approach we aimed to determine a set of themes that constituted core domains of physicians’ and patients’ technological frames. During the analysis process we reflected on our pre-assumptions as well as whether our presence affected the clinical performance. Results A total of 19 patients were interviewed. Age of patients ranged from 36 to 79 years (mean age: 64). Three patients were female, and 16 were male. 16 were diagnosed with type 2 diabetes and three with type 1 diabetes. The duration of disease among patients with type 2 diabetes ranged from two to 35 years (mean duration of disease: 12 years). Among patients with type 1 diabetes, the range of disease duration was four to 43 years (average Page 5 of 10 disease duration: 24 years). A total of nine physicians were interviewed. Six physicians were female, and three were male. Three were chief physicians and six were less experienced physicians. Characteristics of the study population are shown in … Nursing paper about research literature